Optimal Liouville theorems for superlinear parabolic problems

نویسندگان

چکیده

Liouville theorems for scaling invariant nonlinear parabolic equations and systems (saying that the equation or system does not possess positive entire solutions) guarantee optimal universal estimates of solutions related initial initial-boundary value problems. In case heat ut??u=upinRn×R,p>1, nonexistence classical in subcritical range p(n?2)<n+2 has been conjectured a long time, but all known results require either more restrictive assumption on p deal with special class (time-independent radially symmetric satisfying suitable decay conditions). We solve this open problem and—by using same arguments—we also prove superlinear systems. equation, straightforward applications our theorem several long-standing For example, they an ancient solutions, global corresponding Cauchy problem, blowup rate estimate nonconvex domains, The proof main result is based refined energy suitably rescaled solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville Theorems, a Priori Estimates, and Blow-up Rates for Solutions of Indefinite Superlinear Parabolic Problems

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

متن کامل

Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations

In this paper, we study some new connections between parabolic Liouvilletype theorems and local and global properties of nonnegative classical solutions to superlinear parabolic problems, with or without boundary conditions. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of solutions from Liouville-type theorems, which unifies and improves many res...

متن کامل

Second Order Sturm-liouville Problems with Asymmetric, Superlinear Nonlinearities

We consider the nonlinear Sturm-Liouville problem −(p(x)u′(x))′ + q(x)u(x) = f(x, u(x), u′(x)), in (0, π), (1) c00u(0) + c01u ′(0) = 0, c10u(π) + c11u ′(π) = 0, (2) where p ∈ C1[0, π], q ∈ C0[0, π], with p(x) > 0, x ∈ [0, π], and ci0 + ci1 > 0, i = 0, 1. We suppose that f : [0, π] × R2 → R is continuous and there exist increasing functions ζl, ζu : [0,∞) → R, and a constant B, such that limt→∞ ...

متن کامل

Second Order, Sturm-liouville Problems with Asymmetric, Superlinear Nonlinearities Ii

We consider the nonlinear Sturm-Liouville problem −(p(x)u′(x))′ + q(x)u(x) = f(x, u(x)) + h(x), in (0, π), c00u(0) + c01u ′(0) = 0, c10u(π) + c11u ′(π) = 0, where: p ∈ C1[0, π], q ∈ C0[0, π], with p(x) > 0 for all x ∈ [0, π]; ci0 + ci1 > 0, i = 0, 1; h ∈ L2(0, π). We suppose that f : [0, π] × R → R is continuous and there exist increasing functions ζl, ζu : [0,∞)→ R, and positive constants A, B...

متن کامل

Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems

In this paper, we study some new connections between Liouville-type theorems and local properties of nonnegative solutions to superlinear elliptic problems. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of local solutions from Liouville-type theorems, which provides a simpler and unified treatment for such questions. The method is based on rescali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2021

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2020-0096